trans.md 9/6/2019

Computer Programming as an Art

by Donald E. Knuth

1974. ACM Turing Award Lecture

[The Turing Award citation read by Bernard A.Galler, chairman of the 1974 Turing Award
Committee, on the presentation of this lecture on November 11 at the ACM Annual Conference in
SanDiego.]

1974FDF 11— ITEREADERE THDI/I\—F— RAHS—H11811B(ICY> 5« T ThE
SNIEACMERESEZTOZOHBED T L L>FT—3a>(ICEAIBIF1—IU>ITEDSIA.

The A.M. Turing Award of the ACM is presented annually by the ACM to an individual selected for
his contributions of a technical nature made to the computing community. In particular, these
contributions should have had significant influence on a major segment of the computer field.

FRIACMOF 1 —U>JEF, O2E1 -T2 PJ0Z 125« (ST DRAMBIEBEDERR(CHT LT
BEINTZEANCACMICL > TBERESNE I, F(C. INSoEmMEI> E1—9DHFOFERTT
A2 NMCRERFEZSRTIZFITY.

"The 1974 A.M. Turing Award is presented to Professor Donald E. Knuth of Stanford University for
a number of major contributions to the analysis of algorithms and the design of programming
languages, and in particular for his most significant contributions to the 'art of computer
programming' through his series of well-known books.

FaE1974F, A>T A—RKEZDORFILR E. ORX—ZAHIR(IC., PILTUXLDODHETOIS=
S ERBDFENDELZ DEBREBICH U T, Fe. HICBIEOREEEREME U THICKDE
ZIRARDS) —X T [Art of computer programming| (CFHULTFa—YU > TENES=NZE
L

The collections of techniques, algorithms and relevant theory in these books have served as a focal
point for developing curricula and as an organizing influence on computer science."

INSOARCEH NI, ZILTVXAZTUTCEES B ROIL T3> FHIFa1S5 LM
FKIDLHOERELT, Feo AVEI—IBA T RCHIFIHE ? ZHRIRN(CE EHDHICH
([CIZBXY,

Such a formal statement cannot put into proper perspective the role which Don Knuth has been
playing in computer science, and in the computer industry as a whole.

ZDROIRERBFEREIX-INICEL—F—PA IO RBKXVOIE1—F—EREAKRTRE
U CEEE@BYIREZER B ICAND LN TEFTE A

It has been my experience with respect to the first recipient of the Turing Award, Professor Alan J.
Perlis, that at every meeting in which he participates he manages to provide the insight into the
problems being discussed that becomes the focal point of discussion for the rest of the meeting.

1/19

trans.md 9/6/2019

F1-—YU 2 TEDORYIDREE THD77S>).NILY B (CRET DFDRERRE. BHASMIDIAN
TORBRCHRFF RSN TV DEENDFRZIRM T DZH(CEIE LTI ENNREDER D DFERD
ER(CIEDFT,

In a very similar way, the vocabulary, the examples, the algorithms, and the insight that Don
Knuth has provided in his excellent collection of books and papers have begun to find their way
into a great many discussions in almost every area of the field.

IEB(CBEET, B, Bl ZILTUX L. SKUDon Knuthh Mt LIRS OB IZARHR
XDALO2 32 ERDIFIEHFEUZEFF IR TOREF TIHFE(CEZ < DEmN\DET 1 —IL R,

This does not happen easily.
CHUFRFECFRSIDFE A,

As every author knows, even a single volume requires a great deal of careful organization and
hard work.

INRTOEBENND TVBEDIC, 1DOMRIU1—ATHDOTH. ZLOFEEZRVEE-BHHNNE
T9,

All the more must we appreciate the clear view and the patience and energy which Knuth must
have had to plan seven volumes and to set about implementing his plan so carefully and
thoroughly.

E5(C. Knuthh'7&Z5TE L. BOFHEZIEE (CIEEN DRIERN (CEITI DHICHF > TLEET
DFERREZ M E IR F -2 <fHMiITDHENHDFT.

It is significant that this award and the others that he has been receiving are being given to him
after three volumes of his work have been published.

CHOEEENEF O TLDMDENEE CTITRDIBORICRESNTVDIRICEZASNTVWEIFm
AR ESNTNET,

We are clearly ready to signal to everyone our appreciation of Don Knuth for his dedication and his
contributions to our discipline.

R OX—ADBRG EFCEDFREANDOEBICH I DRSZ. #EICTHEE>ED LERDEMNTE
TWET,

I am very pleased to have chaired the Committee that has chosen Don Knuth to receive the 1974
A.M. Turing Award of the ACM.

FhE 1974FDF 21— TEODESIC RV IX-RZBATLEERDERZEBFOHICC LZ2IFE(CE
L<BWVWET.

When Communications of the ACM began publication in 1959, the members of ACM'S Editorial
Board made the following remark as they described the purposes of ACM's periodicals:

ACMDBEN 1959F (CHRZRIELTZEE . ACMDERHITYIDBENZHRBT DcsH. ACMDiIRSE
FEEDA)\—(FRDXS ([CERFE UL,

2719

trans.md 9/6/2019

"If computer programming is to become an important part of computer research and
development, a transition of programming from an art to a disciplined science must be effected."

A2E21—49—-TJOJ5=Z>00N 21— —DMRRBEOEERED LRDIeHCFE. TOTS
SO EEMN SRS DRIE(CRITSEDIRENDDFET.

Such a goal has been a continually recurring theme during the ensuing years; for example, we
read in 1970 of the "first steps toward transforming the art of programming into a science".

COXSRERE. TORBERM. MENCKRDIER=NSD. HIRE 1970FD [TOTS 2T DK
iz (CEZDIEODRIDATVIT] LLofz. T—XTUR.

Meanwhile we have actually succeeded in making our discipline a science, and in a remarkably
simple way: merely by deciding to call it "computer science".

—7. W5 BOOEMDHERFECI DI LCERCHIIL, eNZE(C O E21—5—5
AIT2R] EMRZECULFEUR,

Implicit in these remarks is the notion that there is something undesirable about an area of human
activity that is classified as an "art"; it has to be a Science before it has any real stature.

CNSDESCHERSNTNDDIE, [HiT] &EUTHESND ABOBEEIDOTRIEKICE LU TEX L
IRMINNH D EVWIEEETY . ENEABDERZFF DRICRIZTRIINERDFEA.

On the other hand, I have been working for more than 12 years on a series of books called "The
Art of Computer Programming."

—7. AF D> E2—~9TOTJSZ2T0EM] EFIEND—EDARC12EM FERDBATULE
9,

People frequently ask me why I picked such a title; and in fact some people apparently don't
believe that I really did so, since I've seen at least one bibliographic reference to some books
called "The Act of Computer Programming."

IBERARNTDL DI A MILEBATZONERKEMET. R [O>E1—-45T70J05=>0
DITHR] EFENDN L DD DADEFERZVRK LEIDEFREDT, RRICESLIZEEFED
ZNAVN STAE Sy I8

In this talk I shall try to explain why I think "Art" is the appropriate word.
COEETIE. 77— b1 BNEYREELEESEBRZHALLD EBVET,

I will discuss what it means for something to be an art, in contrast to being a science; I will try to
examine whether arts are good things or bad things; and I will try to show that a proper viewpoint
of the subject will help us all to improve the quality of what we are now doing.

BETHDCEEFIMBIC, MHAINEMCHDCEDBKRZHIALET, ZMABVEDHNENS
DHIVEIARTHEFET, €UT. ETEDOBUELN, FAEBER2EHNNEBENS L TNDZEDE =N
EIBDICEIDCEEZRILDICUET,

One of the first times I was ever asked about the title of my books was in 1966, during the last
previous ACM national meeting held in Southern California.

3/19

trans.md 9/6/2019

FADERDS A MLICDOWTHISHTERSNED(E. BmAHY IA)L-F7 ThfESNZRIEDACMEES
FED1966FTUT.

This was before any of the books were published, and I recall having lunch with a friend at the
convention hotel.

CNEADSHRESNBEIOZET, ORI RTIVTRAEBRZ EDTECEZRBVHULE
g_o

He knew how conceited t was, already at that time, so he asked if I was going to call my books
"An Introduction to Don Knuth".

BEITTICZEDIFRTENEFESHENTLDINEF D> TNZDT, FADERZE R - JRX—XDIA
Tl EEIMEDIMBRIFLRE,

I replied that, on tile contrary, I was naming the books after him.
ZTNICRUT, FARKICERATARICERZMITTLWEEERT.
His name: Art Evans. (The Art of Computer Programming, in person.)
WoEE : P—hID7>R, (AE1—4A-—TOJ3 >0 0. B8,)
From this story we can conclude that the word "art" has more than one meaning.
COYEENS. [ZilT] EWSSERCIFEHROEKRN DD LiGmftIdZENTEFET,

In fact, one of the nicest things about the word is that it is used in rnany different senses, each of
which is quite appropriate in connection with computer programming.

X, COHEORERBESULRDIDE. HE5WBEECTHERASN TSI LTI, ENENL
A2 E21—49-TOJSZ>JCEAEL TIFEICEYTT.

While preparing this talk, I went to the library to find out what people have written about tire word
"art" through the years; and after spending several fascinating days in the stacks, I came to the
conclusion that "art" must be one of the most interesting words in the English language.

COEHEDHEFEE U TCVDBIC, FAESHELEICITOT. AMHEECHEST &l EWLWSSEE(IC
DWTCEBWECEEBRDIFEUE. TUT. XAV O THHABBAONRE®TES Ucg, T [=
il NRETERBEKEVSEDI D TRIITNERSRVWEWVWSIERISGELE UL,

The Arts of Old

If we go back to Latin roots, we find ars, artis meaning "skill." It is perhaps significant that the
corresponding Greek word was ***** the root of both "technology" and "technique."

STODII—VYEEEDE. (=il EVWDEEG [l Z2B8KUEI., HiLIDFIUSwEN
[o0>—] & [TV 0] MADIL—YVICIRD *x x x x THDCEIIHESKEETY,

Nowadays when someone speaks of "art" you probably think first of "fine arts" such as painting
and sculpture, but before the twentieth century the word was generally used in quite a different
sense. Since this older meaning of "art" still survives in many idioms, especially when we are

4/19

trans.md 9/6/2019

contrasting art with science, I would like to spend the next few minutes talking about art in its
classical sense.

SHTIE., Tart] EWDS &, BESSFCTBUVEMBD(E, BRI &V e [l T
A 20 LETE AN (CTRR(CEDRR THEONTLWE L. Z<DERT. 1FICRIZFE =M%z
LEE T BER(C. D Tart] OHVBRKIEELZBRODO T, DULHHENQREKRT. [lart] (CDUVTEE
UIlcWERWET,

In medieval times, the first universities were established to teach the seven so-called "liberal arts,"
namely grammar, rhetoric, logic, arithmetic, geometry, music, and astronomy. Note that this is
quite different from the curriculum of today's liberal arts colleges, and that at least three of the
original seven liberal arts are important components of computer science. At that time, an "art"
meant something devised by man's intellect, as opposed to activities derived from nature or
instinct; "liberal arts" were liberated or free, in contrast to manual arts such as plowing. During the
middle ages the word "art" by itself usually meant logic , which usu.ally meant the study of
syllogisms.

R CHNT, BRAIDOKRZFVNDPDD 7 DOEERIE. 3205, & XF. WRIEF. Bilr, &0
F.BE RXFEVOEEDZHRRBCHICERIITNE L. TNE. BEOKFOHEREDT
DF1SAERFELRRD, TD7DOOHERBDSE, MR EE3DRF>APEL—FTAICX
DEZREUVTEETHDITEICEALTLS SV, HiF, [Ei1] &G, BRAVKREE(CHEK T DE
E(FXRIYC, ABDOIMEC KO TERSNTCEDZE/R L TLER L. BERBER. fED LD
FEROEM & (FXREY(C, FRSNZMrBRTLUE.

Science vs. Art

The word "science" seems to have been used for many years in about the same sense as "art"; for
example, people spoke also of the seven liberal sciences, which were the same as the seven liberal
arts. Duns Scotus in the thirteenth century called logic "the Science of Sciences, and the Art of
Arts". As civilization and learning developed, the words took on more and more independent
meanings, "science" being used to stand for knowledge, and "art" for the application of knowledge.
Thus, the science of astronomy was the basis for the art of navigation. The situation was almost
exactly like the way in which we now distinguish between "science" and "engineering."

BFE] EWSEER. [Eill CEERAUBKRTREEASNTVNDXIDTT. ZERE AL
Fle. 7DDURSIVSA T RICDWTELFLZ. R 7D0EERIBERACTURZ, 13t
dDuns Scotus(d, wIEZ [RIZDOROMFEEEMOPDEM] EHUFRLUZ, XAEFENEET
BICON, ZOERRFFIFTIMILZULERZFTUVDLDCRD, BZEFHH#HERT LHICHERS
. [=f] (FHEHDOICADEH (TEDNE U, UIehto T KRXFORZ (ERBIMOEET L
2o TOWRRE. [RIF] & [T2] ZXRBIT3HEEEFRUOTUR.

Many authors wrote about the relationship between art and science in the nineteenth century, and
I believe the best discussion was given by John Stttart Mill. He said the following things, among
others, in 1843:

Z << DOEEN 1M OEMERIFDOBZRICDVWTENTE D, FEDiEA(FIohn Stttart MilllC k>
TEZoNEEBVET, KIF1843F(C. EDDIFUTOCEEE ST !

5/19

trans.md 9/6/2019

Several sciences are often necessary to from the groundwork of a single art. Such is the
complication of human affairs, that to enable one thing to be done, it is often requisite to
know the nature and properties of many things ... Art in general consists of the truths of
Science, arranged in the most convenient order for practice, instead of the order which is
the most convenient for thought. Science groups and arranges its truths so as to enable us
to take in at one view as much as possible of the general order of the universe. Art brings
together from parts of the field of science most remote from one another, the truths relating
to the production of the different and heterogeneous conditions necessary to each effect
which the exigencies of practical life require.

—DOEMDOBEREEZDCFE. ULFUEWDODIOREMRETT, CNIFABDOLEZDEMET
HD. 1DDTENTEDLS(CTIRBIC(F. AEPZLDEDDFFHEEHDZENUEULERET
9. —MR(C. EMERFOEENSKD., BECL > TRHEFDIEFTEHRLS, REKCEODTRE
BRRNEFTRESNTVET .. BFEE FEHO—MNIRFZRIERRD—BETIEETESLD
(S, TDOEXRZIIL-TL. BEBLFT, =fild. BVCROBNERIZEDTFDO—ER. REFDE
SNV E T DRIRICVERERILDEERFMFDEMCE T DIERZR/OMIITET .

As I was looking up these things about the meanings of "art," I found that authors have been
calling for a transition from art to science for at least two centuries. For example, the preface to a
textbook on mineralogy, written in 1784, said the following: "Previous to the year 1780,
mineralogy, though tolerably understood by many as an Art, could scarce be deemed a Science."

[E1] ORKRICEDNTINSDZ EZRANTND E, BE PR EE2HHLDO”. =iMih SR
ANDBATERD TS ENDOMDFE L. TLERFE, 1784F(CENMNHNFDERIBEDFX (F
RDES(CERTWNET . [HIPZEEF ZLDANEME LU TERTEDIEDD, 1780FLUFIFHRIZF
ERRBESNDCERFEEALESDFEATLUE. |

According to most dictionaries "science" means knowledge that has been logically arranged and
systematized in the form of general "laws." The advantage of science is that it saves us from the
need to think things through in each individual case; we can turn our thoughts to higher-level
concepts. As John Ruskin wrote in 1853: "The work of science is to substitute facts for
appearances, and demonstrations tbr impressions."

FEAEDRHEICLDE. TRIF] &(d. —#EE DER] OFZ TRl (CRESNARR(ESNIZA
WEERLFET . RZOFREGE. BL2DT—RT LB ZEZERDREENSINCEZRS LT
T BAZLDBVINILOBIRZ(CEZDZENTEFT . 23> - SAFIUNI8EIFCENEX
S RIZOHFBENEZERCESHR. IREZTECARN—2329352ETY] .

It seems to me that if the authors I studied were writing today, they would agree with the
following characterization: Science is knowledge which we understand so welt that we can teach it
to a computer; and if we don't fully understand something, it is an art to deal with it. Since the
notion of an algorithm or a computer program provides us with an extremely useful test for the
depth of our knowledge about any given subject, the process of going from an art to a science
means that we learn how to automate something.

INHARUIZEBEBENSHIEL TLDIHS. HSFROFHIOIFICARTDLDCBRRFT. RIFE
SRR L CTVRAHRDT, IVE1—4F—([CBRXBIENTEDITLLD. TUTEUIE
SHiMahe TR (CIBRL TLRITNE. ZNEZRSDOEEMTT . ZIILTVXAFLEEFI>E2—4

6/19

trans.md 9/6/2019

— O3 L08R, FEDFAICHAT DHHDORS (COVWTIERICHEART I hRHT 3
. EMNSREANEEDLT O, AheBEt I EEFAEZ2BRLET.

Artificial intelligence has been making significant progress, yet there is a huge gap between what
computers can do in the foreseeable future and what ordinary people can do. The mysterious
insights that people have when speaking, listening, creating, and even when they are
programming, are still beyond the reach of science; nearly everything we do is still an art.

ATHRBEEASRESZRITTOE I, IMVERICOCE1—F-NTEdT L. HEEDANT
EFI. ALPFELED. BULED, R LD, TOJ5Z20% 72D I3 EE(THROTRE
INAR(E. MZOHEZBI TNET . MEEMTDELALINTDI LEFHRIEEMTY .

From this standpoint it is cer[ainly desirable to make computer programming a science, and we
have indeed come a long way in the 15 years since the publication of the remarks I quoted at the
beginning of this talk. Fifteen years ago computer programming was so badly understood that
hardly anyone even thought about proving programs correct; we just fiddled with a program until
we "knew" it worked. At that time we didn't even know how to express the concept that a
program was correct, in any rigorous way. It is only in recent years that we have been learning
about the processes of abstraction by which programs are written and understood; and this new
knowledge about programming is currently producing great payoffs in practice, even though few
programs are actually proved correct with complete rigor, since we are beginning to understand
the principles of program structure. The point is that when we write programs today, we know that
we could in principle construct formal proofs of their correctness if we really wanted to, now that
we understand how such proofs are formulated. This scientific basis is resulting in programs that
are significantly more reliable than those we wrote in former days when intuition was the only
basis of correctness.

COBmMNS, IE1—4F—TOJSZT0%ZRZICTBICEBERECELT LV ETHD, D
EEOBHE CEIAURRENRRINTHMSI5ET. IWeBFENCKERESZRITE UL, 158
gi. J>E1—4—T0O05Z>2JFEBECIKEBfEENTULRD D Efesd. TOTJSLADIELESZE
SEBALEKS EZEXBAREBFEAEVWERATURE, TOVSLANET D EN [HHDd] FTJO
DS LZWNWODEUR. EiF. Iesd. TO0S AN EARBERAECBVWTEIELWLWEWSIH]E
SERIRITBHEITSHDERFATUR, BEICIRDTEDIWL, A EBE@TOTS LEZERD IV
IBfE9 B I2ODHFIEDOTOTCRAICDVWTEUVE U, TO0S LMEEDRAZEIERF UIRHTWNDIE
H. BEREBESTERICIEVWESIBSNET OIS AREFEEAESDERAN. TOJS=Z>2D
(CRET D CDFHUWAGIFIRTE., ERICRKERERDZEHHUTVWEYT ., BRE SETOTSA
HELESE, ZOKISREEANED KRS ICERLESNDIHWZIEFRUZDT. RKHE(ICLWLWRS, [RE]
EUTENSDIEHEESOERN/REEAZBETET I EZADO> TR END T ETT, CORIEMIE
B, BENEESOHE—DIBHILTH > ZLEIICEWZBDXIDEEINCEFEEOSVNTOT S A
ZzEEBLUTVET,

The field of "automatic programming" is one of the major areas of artificial intelligence research
today. Its proponents would love to be able to give a lecture entitled "Computer Programming as
an Artifact" (meaning that programming has become merely a relic of bygone days), because their
aim is to create machines that write programs better than we can, given only the problem
specification. Personally t don't think such a goal will ever be completely attained, but I do think
that their research is extremely important, because everything we learn about programming helps

7119

trans.md 9/6/2019

us to improve our own artistry, in this sense we should continually be striving to transform every
art into a science: in the process, we advance the art.

(B87005=>7]1 ONFE. SHDOATIHERRDOEERDEFDIDTY ., TDREE.
[P—F« 7O ELTOOACED—4A—TOJS=Z20] EWDP41 MNLOBEEZIRHTEZC
EZRBATWET (DFED, JOJSZJFERDEWMICIROIZEVNDZETT) » RERS.
SOBEM(E. BREOMLHRIZITZEX T, BN TERIULICTOISLEELKII O EEDCERE
msTY,

Science and Art

Our discussion indicates that computer programming is by now both a science and an art, and that
the two aspects nicely complement each other. Apparently most authors who examine such a
question come to this same conclusion, that their subject is both a science and an art, whatever
their subject is "The Science of Playwriting". I found a book about elementary photography, written
in 1893, which stated that "the development of the photographic image is both an art and a
science". In fact, when I first picked up a dictionary in order to study the words "art" and
"science," I happened to glance at the editor's preface, which began by saying, "The making of a
dictionary is both a science and an art." The editor of Funk & Wagnall's dictionary observed that
the painstaking accumulation and classification of data about words has a scientific character, while
a wellchosen phrasing of definitions demands the ability to write with economy and precision: "The
science without tile art is likely to be neffective; the art without the science is certain to be
inaccurate."

eBmE RS, I E1—49—TOJS IS TIEIRIZFEEEMOmA TS D, 2D0AIEHNE

WCOEKHRUEDTVBRCEZRUTVWET, EDPSZDROREBMZRITTDEEAEDE
B HESOEEN [TLASA47+1>2JDRE] THo>TE. RFEEEMDOmATHDEWVWDIEL
fEmOZELET, falE. 1893F(CEMIz [BEEEBROHEEIEM CEHORETESHD] EEMN
TENERBHE(CET2AZRDITE U ERB. &l EVWDSEEZMR T DIEHICEFHEERIIC
D EFleEE 20T RIF] | RREEEREE HEZEICEFRETHDEMTHD] EEo
TIREEDFXZ—BRZ. Funk&Wagnall DEFEDIRES (. SE(CET DT —IDEDIIND

EREDHICERENFENSDD. EROENRIL -2 FRBRBEEIERESTE<RENZEKRT D
CEEBRUFUR, BIZEORWVWEMISAIEETHDEMELTLET,

When preparing this talk I looked through the card catalog at Stanford library to see how other
people have been using tile words "art" and "science" in the titles of their books. This turned out to
be quite interesting.

COBEOERZI DEE, FAFIRYZTA— RRBEOH— RHYOTZRT. MOANKRDS A
MLT [=ilT] & TRIZ] EWSEEZEDKSICHERAULTVDIHZRNRFT UL, TNIFIFFE(CHEK
RN ENHIBALE LT,

For example, I found two books entitled The Art of Playing the Piano, and others called The
Science of Pianoforte Technique, The Science of Pianoforte Practice. There is also a book called The
Art of Piano Playing: A Scientific Approach.

feEZIE. TET7) #mELSEM] EWDYA NLO2MOARE., E77 JAIILTHittORE, EJ77J
TAIITREBORIZELEWDSAKZRDITER U, TEF EEO=EM RIFEN7TO0—F] E0WVDSKE
HOET,

8/19

trans.md 9/6/2019

Then I found a nice little book entitled The Gentle Art cf Mathematics, which made me somewhat
sad that I can't honestly describe computer programming as a "gentle art".

ZNHS. BFZSRUIEThe Gentle Art&EWS 5 A MNLDRBUMNSIBAZRDITE L. N
& AE1—FT7O0035=>20% [EP0HVEREM] EUTIEBICHATERNC EZDLERLLE
BF U,

I had known for several years about a book called The Art of Computation, published in San
Francisco, 1879, by a man named C. Frusher Howard. This was a book on practical business
arithmetic that had sold over 400,000 copies in various editions by 1890. I was amused to read
the preface, since it shows that Howard's philosophy and the intent of his title were quite different
from mine; he wrote: "A knowledge of the Science of Number is of minor importance; skill in the
Art of Reckoning is absolutely indispensible."

1879F(CH> TS5 > S XOATHMENTZC. Frusher Howard& UL S8 dMThe Art of Computation&
WDARICDWT., FAFEEFINSH > TWELZ, INlE. 180FFXTICETHETFRIFT 43>
TA40R 8 EZBR5E U COVEERANRE SR ABMDAT Uz, /\D— ROBZ LMD NLOR
EAFDED EFHRDERO TS EZRUTVWBRDT, fAFFEXEFRATHAMN D, KR
DED(CEVZ . [BORZOHHM(ETHFEDEE TR, LI DRkl [CARBI R T
Do |

Several books mention both science and art in their titles, notably The Science of Being and Art of
Living by Maharishi Mahesh Yogi. There is also a book called The Art of Scientific Discovery, which
analyzes how some of the great discoveries of science were made.

HBMOART(E, FA MUCRFEEMOmA, FHICK/I\US - INS T - SFCRDFEDORIFEEE
BDEMICERLUTNWET . RIZOREROEMEFENDIAEHDFET. TNE. RZOBRIIER
DN DM EDK S [CIRRENTEZERITLE T,

So much for the word "art" in its classical meaning. Actually when I chose the title of my books, I
wasn't thinking primarily of art in this sense, I was thinking more of its current connotations.
Probably the most interesting book which turned up in nay search was a fairly recent work by
Robert E. Mueller called The Science of Art. Of all the books I've mentioned, Mueller's comes
closest to expressing what I want to make the central theme of my talk today, in terms of real
artistry as we now understand the term. He observes: "It was once thought that the imaginative
outlook of the artist was death for' the scientist. And the logic of science seemed to spell 'doom to
all possible artistic flights of fancy." He goes on to explore the advantages which actually do result
from a synthesis of science and art.

HHENREKRTO [Ei1] EVWDSSEFSNIEITITY, EE. RDOFA NULEBARLESE, FAlEZD
B TEICEMZEZEZTCVWERATUR., AFREOBKREVNZED EEXTVELUE, BESKL.
BENBRRRETRE DM > ERBEIKZEVVA(L, Robert E. Mueller(C&3The Science of Art&EFE(EN
DHRDEBAEDERTURE. AERUEIRTOARADH T, Z1—5—DKE. SHOILDT—Y
DHRLT—=XICUIEWC EZRIRT D EICREEV. (& [HDTIEEMROBENDICEALR
HIFRFECEODTEIRTHDEEZ SN TV, BIFORIEE [ZRD T N TOREEREMBIRT
NOWER] ZEDIeLDIZ] k. ERRICHIZFE EEMDOMENSE U DFRZERDFEITTLET,

A scientific approach is generally characterized by the words logical, systematic, impersonal, calm,
rational, while an artistic approach is characterized by the words aesthetic, creative, humanitarian,

9/19

trans.md 9/6/2019

anxious, irrational. It seems to me that both of these apparently contradictory approaches have
great value with respect to computer programming.

—HEEC, RIENT7TO—F(EREH. KR8, JEABH. 558 SENEVDSSETHEHMITSN
FIN FMNT7TO—-F(FEN., AEH. NBH, AR, FEEEVWSEETHEMLITSNET.
CNSDOESHNCFES D7 TO-FFEESE. D> E1—F-TOTS 2T (CBUTRE/M
EBR'HDLDICERRFET,

Emma Lehmer wrote in 1956 that she had found coding to be "an exacting science as well as an
intriguing art". H.S.M. Coxetcr remarked ira 1957 that he sometimes felt "more like an artist than a
scientist". This was at the time C.P. Snow was beginning to voice his alarm at the growing
polarization between "two cultures" of educated people. He pointed out that we need to combine
scientific and artistic values if' we are to make real progress.

IV - L—N—(3F1956F(C. O—F« >IN [EELRRIFE TH D EEFCHEKE 2T D= Thd
EFRBUREEVTULETY, H.S.M. Coxetcridira 1957TC. [RIFEEBEEVWDSKDEMEIRDLDSE] &
RBUBDCENSDDEMARFE LS, CHUTHEBRFDC.PE(E. BEZRIZITIEALD [ZDDXE] DEID
DB ED (CEERISS UtaHE U, KiE. IWEENEDESZRITDI(CIE. RIEFERMEEE =
Bz EAEHDEDINENDD EERUE L,

Works of Art

When I'm sitting in an audience listening to a long lecture, my attention usually starts to wane at
about this point in the hour. So I wonder, are you getting a little tired of my harangue about
"science" and "art"? I really hope that you'll be able to listen carefully to the rest of this, anyway,
because now comes the part about which I fled most deeply.

RUVEBETIEOTVWIIER(CEODTVWDEE, AOEFREE1RREIO C O RTENIROE T,
[RlIZ] & [Eil1] EDVWTOIADOSV\EILICDULDSAZTD LTVE I ? &CHh <. N SHIAH
BEESREITIEEDHERDIDT, HRIENCNOEDEIEZSHLLCENTERCEEZRY(ICEH
ijc

When I speak about computer programming as an art, I am thinking primarily of it as an art form,
in an aesthetic sense. The chief" goal of my work as educator and author is to help people learn
how to write beautiful programs. It is for this reason I was especially pleased to learn recently that
my books actually appear in the Fine Arts Library at Cornell University. (However, the three
volumes apparently sit there neatly on the shelf, without being used, so I'm afraid the librarians
may have made a mistake by nterpreting my title literally.)

7—hELTHOAYED—F—TOJSZ2TICDNTCET £ &, AFENZENREKRTDI — b
BREUVLTELERTVEY. BEESLUVUBELLCOMDASEOERBZREG. A4NELWLTO
DS LN ZELBEEZIDZEMTDZETY . ZDesH. wii. FAOARNERR(C T —RILRFEDEM
MEFE(CHEB SN TVNDTEZHO T, ETEEULMDIETY. (2L, 3DDRY 21— AlHMER
SNBZERLKPDLICEEALBENMMNTNDLDSTY ., €D, HBEENY MLUFTSILZE
BEX CRER DTV EDELTNET,)

My feeling is that when we prepare a program, it can be like composing poetry or music; as Andrei
Ershov has said, programming can give us both intellectual and emotional satisfaction, because it
is a real achievement to master complexity and to establish a system of consistent rules.

10/19

trans.md 9/6/2019

IORET@E. TOJSLZERIDESE, FOEEZFHRTDILIBEDICRDFT., 72 RL
A - DIL23TNE>ELDIC. TOJSZ2TE. BMEERRL. —BURIL-IILDS AT L%
W92 LFAREDKRTH DD, HMEiGE LRHBHBEOHMAZSZ D ENTEET,

Furthermore when we read other people's programs, we can recognize some of them as genuine
works of art. I can still remember the great thrill it was for me to read the listing of Stan Poley's
SOAP II assembly program in 1958; you probably think I'm crazy, and styles have certainly
changed grcaltiy since then, but at the time it meant a great deal to me to see how elegant a
system program could be, especially by comparison with the heavy-handed coding found in other
listings I had been studying at the same time. The possibility of writing beautiful programs, even in
assembly language, is what got me hooked on programming in the first place.

E5(C, MDADTOTSLZFDEE. TNSOVN DOWVEARYIDEIMERE U TERMITDEN
TEEY, 1958F(CRYR—U—MDSOAP II7t>TJUTO0SLADYR MaRAIES & FAIC
EDTRERAIIIZSTEREATCVNET, BESRAESENUVWEBRD L. ENLEER Y1)LISHE
MMCgrealtiy(CEDDTZH. ZDEE. FICMDAICESNBIANE—/\>O ROO—F1 2T EHEL
T. SRATLTOTSLNRNENZFEILHY b THINZRDZENTEEINERFCHER U TULE
DX bk, PEOTUEBTEZELWITOISLAZELOREAEE. 2ETETOISZIJ(CER(C
B2 TZEDTY,

Some programs are elegant, some are exquisite, some are sparkling. My claim is that it is possible
to write grand programs, treble programs, truly magnificent ones!

TILA> MTOSLAEBNE. #7005 AEHD. B TOJSLAEHNDFET, TADEE
F. HEARRTOTS A BEOTOTSA. KYICEBESUWEDEEZELL ZENTEDIENDTET
ER

Taste and Style

The idea of style in programming is now coming to the forefront at last, and I hope that most of
you have seen the excellent little book on Elements of Programming Style by Kernighan and
Plauger. In this connection it is most important for us all to remember that there is no one "best"
style; everybody has his own preferences, and it is a mistake to try to force people into an
unnatural mold. We often hear' the saying, "I don't know anything about art, but I know what I
like." The important thing is that you really like the style you are using; it should be the best way
you prefer to express yourself.

TJOUOS=Z2TDRAIAILDT AT TR DWNICREFRICETH D, Kernighan&Plauger(Ckd
Elements of Programming Style(CDWTDORES ULVNESIRAZRIEC EZBE>TLEIT., N
(CRELT. #EN I[RED] RIMILEFELRVWCEZEBI THEK ZENREEETY, #HEN
BODHHZERD TLDDT. ARZABERRBRE(CEHULDETDIDE/MENTT, [EHICDU
TIHEABIHDFEBAN, FERZEFFODTWVET, | EVWDIIEEZXLLKEBICULET, EERC

F. FRAUTWBRIANINDARHECHFET/RCETY, ZNEHRIEHGIRICBEEZRIRT D EZHF
OREDFETHDINETY,

Edsger Dijkstra stressed this point in the pretence to his Short Introduction to the Art of
Programming:

11719

trans.md 9/6/2019

Edsger Dijkstrald. CO=Zz#EAL T, #D [TO05
1z

11l

07— AR ANOERM N EsERE L FEL

It is my purpose to transmit the irnportance of good taste and style in programming, but the
specific elements of style presented serve only to illustrate what benefits can be derived from
"style" in general. In this respect I feel akin to the teacher of composition at a conservatory: He
does not teach Ms pupils how to compose a particular symphony, he must help his pupils to find
their own style and must explain to them what is implied by this. (It has been this analogy that
made me talk about "The Art of Programming.")

TJO0S =20 DK ER ST IVDEBRMRZLEZ D EFIDENTIN, IBRESNERI1ILDF
EDER(E. —MRIC [RIAIL] NEEDKSRBFANESNBINZRIEITTIT, DT, FAlE
SEROEHMOLEECMTND ERLUTVET | HIFEETIHFEDREMZIEH I D HEEHZ TL)
FtA. (COFEHECKD., [TOTSZIDFEMM] (CDWTEITLDICRDELR,)

Now we must ask ourselves, What is good style, and what is bad style? We should not be too rigid
about this in judging other people's work. The early nineteenth-century philosopher Jeremy
Bentham put it this way:

S MEBEEDEE(CERRINERDFEEA. BOWRYIILEMITIN. TEUTEVWRSYTIL
(I TIH ? I TE B (IMEDANDERZHIRT T DERICTNIC DV TR U TS DIRETIEHDFEA. 19
HIPBEEDEFES T L I —ROPARRDL DS (SGRNTNET,

Judges of elegance and taste consider themselves as benefactors to the human race, whilst they
are really only the interrupters of their pleasure. There is no taste which deserves the epithet
good, unless it be the taste for such employments which, to the pleasure actually produced by
them, conjoin some contingent or future utility: there is no taste which deserves to be
characterized as bad, unless it be a taste for some occupation which has a mischievous tendency.

B LIBFORKE (. BOEEZAEORALRRUFIN BSEARECHSOESUDIHESE
(CTEFLEA. TNNERICESHEHH UEECIC. BRNEIL(IIEROBARZHEUDITDELD
IRERADIZHDKRTIRAFNE. BNEZDSTRVRD. BOERHBIITESNS(CIETDKREHDFE
ANET SEMD S DEEEDIF 7.

When we apply our own prejudices to "reform" someone else's taste, we may be unconsciously
denying him some entirely legitimate pleasure. That's why I don't condenm a lot of things
programmers do, even though I would never enjoy doing them myself. The important thing is that
they are creating something they feel is beautiful.

ADIFH%ZE [hE] TREHICEPEEDRREZERIDEE. NBEFEBEHDODSICHKICT

(CEHERECEBEITDINEULNERA. EHNBTE. TOJSY—HEDTWRICEERUTEL
ATWNRNWELTHE. TOUSY—HULTVNBRT EDZL ZMBSERNDTY, BEERC &G, ®
SHAEUWERUDEDZER L TVNDENDZETT,

In the passage I just quoted, Bentham does give us some advice about certain principles of
aesthetics which are better than others, namely the "utility" of the result. We have some freedom
in setting up our personal standards of beauty, but it is especially nice when the things we regard
as beautiful are also regarded by other people as useful. I must confess that I really enjoy writing
computer programs; and I especially enjoy writing programs which do the greatest good, in some
sense.

12/19

trans.md 9/6/2019

FFESIAULEFRT. ROBARIESBIC, MOEDOLD BBNIEEZDORFEDRE 7305
Ko [BAMK] EDOWVWTWKDHDT BIARe5XTNFE L. IWVCBIMEARNRELSDEE
ZREITDEENHDFIN, IEBENELVWEHRTEDHMBDANSEBRTHD EHEETND
EE TNEFCEBSLVWTY, FFOE21—9-TOJSLZELORRHCELVWEERAL
RIINERDFERA. TUT. HIBREKTRADHEZEZS5ITOT S LADIEREFFICELATL
3

There are many senses in which a program can be "good," of course. In the first place, it's
especially good to have a program that works correctly. Secondly it is oken good to have a
program that won't be hard to change, when the time for adaptation arises. Both of these goals
are achieved when the program is easily readable and understandable to a person who knows the
appropriate language.

E53A. JOJSLN TRV CECEELDORENHDEY. €ETE. ELEMEIBDTOY
SLAZABLUTEL EFICEFTY . BIC, BEORKMNREZEES(C, BEEIDIONEL <721TO
DS LZRFDCLEFRVNCETY ., INSOmMBOERE, BYREEZIH D TLWSANTOTS A
ZEAHECHAIMD ., B TEDIHE(TEMRSNET,

Another important way for a production program to be good is for it to interact gracefully with its
users, especially when recovering fl'om human errors in the input data. It's a real art to compose
meaningful error messages or to design flexible input formats which are not error-prone.

AETOTSLNBYTHDILHDRDERRGER. FCI—TF-—DIS—ZEEIDEEC, 1
—H - EREPOMDIBIETT. ANT—H. BAERDHD TS —Avz—ZFRLED, T
S—IREUCKWERRRANERZHZETLIZD T DDEARM T,

Another important aspect of program quality is the efficiency with which the computer's resources
are actually being used. I am sorry to say that many people nowadays are condemning program
efficiency, telling us that it is in bad taste. The reason for this is that we are now experiencing a
reaction from the time when efficiency was the only reputable criterion of goodness, and
programmers in the past have tended to be so preoccupied with efficiency that they have
produced needlessly complicated code; the result of this unnecessary complexity has been that net
efficiency has gone down, due to difficulties of debugging and maintenance.

JOOSADREDES1IDOEELMIEE. I>E21—4F—DUY —INER(CERSNDINET
T, RO, ZLDANTOTSLOMEREZIFH U TNDCEEERZCB O TNET, TDEAI.
ENE—DFTHDRWEETH > LN SDORIGZRERL TWRIEHTH D, BEDTOISY
— (&, ARE(CEMIR D — RZER T DIEFEDR(IOFIEIDMEEANHDDEUE. CORREIREME
DFER(E, FRENRLK RO ETT, T/I\WIEATFIOINREBT=D, F I U TULE

9,

The real problem is that programmers have spent far too much time worrying about efficiency in
the wrong places and at the wrong times; premature optimization is the root of all evil (or at least
most of it) in programming.

AHORREG. TOTSV—HMED TGP CRE S iR ICHERZ LB LITET TR ENDTET
9, BIEF2dmENE. TOTSZTCHEITDINTORE (FEPRL EEZDAED) DIRIR
t\\g_o

13719

trans.md 9/6/2019

We shouldn't be penny wise and pound foolish, nor should we always think of efficiency in terms of
so many percent gained or lost in total running time or space. When we buy a car, many of us are
almost oblivious to a difference of $50 or $100 in its price, while we might make a special trip to a
particular store in order to buy a 50¢ item for only 25¢. My point is that there is a time and place
for efficiency; I have discussed its proper role in my paper on structured programming, which
appears in the current issue of Computing Surveys.

FIEBE—XEBUHFDEERNCRD TFRDFLBA. T, EITHBIDPAR-IAEARTESND. F
EERONBIEENIERB(CZVNEVNDRT, PRERBICEIDINETIEHDFEFEFA. BEZEDEE.
FTeB D% < (FZDMIEDZEZES0 RILEZ(F100 RILICIFEAERDVWTWLWERA. —H. 2o
25¢T50¢DT7 A T LAZBESIEHIRHFEDEICHBIRRITE T D2MBULNERA. FADORA > MME.
MEDT=HDIEE EIBPINSHDD ENDS T ETY, Computing SurveysDERITS (CHEEH SN TL\D18
BET7O05=27(CAT2:mX T, TOBREENCDVWTEHRALE LTz,

Less Facilities: Mere Enjoyment

One rather ,curious thing I've noticed about aesthetic satisfaction is that our pleasure is
significantly enhanced when we, accomplish something with limited tools. For example, the
program of which I personally am most pleased and proud is a compiler I once wrote for a
primitive minicomputer which had only 4096 words of memory, 16 bits per word. It makes a
person feel like a real virtuoso to achieve something under such severe restrictions.

BENRBREE (CDVWTR DWLWEARDFWIRAZC ED1DE. BBSnizY—)L TN ZEERKRT D E

=, IEBOEUNKIBICELETDZETY, EEXE IMBEANICREEATEDICEOTNS
JOJS A D T4096:EUNRN D ERIENAR=—O>Ea—4F—RICEVWZO2 /(45—
9. XEY., 16EWY ~NT—R, ZOXISREUWEIRO T TRANZIERT D ElE. AZEAHDE
FORSCERUETEET,

A similar phenomenon occurs in many other contexts. For example, people often seem to fall in
love with their Volkswagens but rarely with their Lincoln Continentals (which presumably run much
better). When I learned programming, it was a popular pasthne to do as much as possible with
programs that fit on only a single punched card. I suppose it's this same phenomenon that makes
APL enthusiasts relish their "one-liners." When we teach programming nowadays, it is a curious
fiact tlhat we rarely capture the heart of a student for computer science until he has taken a
course which allows "hands on" experience with a minicomputer. The use of our large-scale
machines with their fancy operating systems and languages doesn't really seem to engender any
love for programming, at least not at first.

BEERDIARE, MOZDIRRATERELFT . LEXEFE ARRTAIIRDT—52 ERITEED
TENBNKSTIN, UZH—2OCFRIAIL (HOZICESRVNERIDOND) Lol z
LEBA. TOJSZIRZFALESE, JIOFSNLIROAD— REFICINEZTOT S LA THEE
RIEDZ< DT EZITDOMN—MMTUR. APLYZFHESD (D25 AF—1 ZEUATLNDID
F. SNEACRAKRLEERBVET, WEMRATOIS I IZ2PRDEE, BN I-X2ZiET
BDFET. ADEI—FIBATITOROFEDLZDONOC EFHDECHDFERA, NICLKD. ==
O>Ea1—49—Th [FK] KRN EIRECIRDEY . RFRARL—FT« 2T RFLAEEEZMR
JERRERR S > DERF. PR EERAEZTOTS I INDBBEZED XIS CERIFEA.

It's not obvious how to apply this principle to increase programmers' enjoyment of their work.
Surely programmers would groan if their manager suddenly announced that the new machine wilt
14/19

trans.md 9/6/2019

have only half as much memory as the old. And I don't think anybody, even the most dedicated
"programming artists," can be expected to welcome such a prospect, since nobody likes to lose
facilities unnecessarily. Another example may help to clarify the situation: Film-makers strongly
resisted the introduction of talking pictures in the 1920's because they were justly proud of the
way they could convey words without sound. Similarly, a true programming artist might well
resent the introduction of more powerful equipment; today's mass storage devices tend to spoil
much of the beauty of our old tape sorting methods. But today's film makers don't want to go back
to silent films, not because they're lazy but because they know it is quite possible to make
beautiful movies using the improved technology. The form of their art has changed, but there is
still plenty of room for artistry.

CORANETOTSNY—DEBEOREUAHZIEOITTZHICEDKS (CERITINIASHTESDEE
Ao FTUWI S ZDAEUNEOWAEYDHEZICUNRSIRNC EZXR—D 7 —NERRERTD
s TOUSXRIESHEERELITEITULLD. €UT. #TH. RBHLR [TOJS=207—F
14 ABN] TERE., HEARECHRELRD CEZITFFRVDT., TDOEOREFELUZENDNT D EF
BEnxEd. BIOFIFIKRREBREIC T BDICZIIDONE LNETA : REEESL. SRUTEESR
GRBDCENTEBHFEZEDICERO>TULEES., 1920FR(ICBEERFEIT CEDEAICHIETIIUE
Utz BRRIC. BEOTODUSZIT7—FT 1 A ML, B2 EZELKD BARMEES, SHORBE LIRS
BlF WY - hFEDELEDLZ L ZERSEENSGDET ., UH L. SHOMBERIES
(&, BENRBITTLBINS TR, RSNz ER U TCEUVWMREZIED Z EHHR D E]EE
THRZEZEMMDTWBIES, AL MREIICRDE<HDFERA. BESDOEMDOE(EENDEL
=t =rtDRtIELIE<ETAHDET,

How did they develop their skill? The best film makers through the years usually seem to have
learned their art in comparatively primitive circumstances, often in other countries with a limited
movie industry. And in recent years the most important things we have been learning about
programming seem to have originated with people who did not have access to very large
computers. The moral of this story, it seems to me, is "that we should make use of the idea of"
limited resources in our own education. We can all benefit by doing occasional "toy" programs,
when artificial restrictions are set up, so that we are forced to push our abilities to the limit. We
shouldn't live in the lap of luxury all the time, since that tends to make us lethargic. The art of
tackling miniproblems with all our energy will sharpen our talents for the real problems, and the
experience will help us to get more pleasure From our accomplishments on less restricted
equipment.

BBFEDIDICAFILEMELE LN ? RECHIED TREOMEBEREE (L. BF. EEHNRIA
HIRRR T, Z < DIBESREBEEEN RSN TLDIMOE TERO=EMZEFZATZLDTY., TUGHE
F, BN TOTSZDIICDVWTEATETEREEER L IFECKEFTROCED1—F—I(C
PVIOCATERNDIEALZICHELTWVWDRLDSTY, COFEDHEGNE. FheBE5BEBDHEET RSN
EERZFEBITBINEZ] ELWDSTETYT, ABHRFHIENRESINTVNDESE, IWEEERFT [H
B5v | JOJSLAZITOICETINTONREB/DICENTEET, NEBEBERN(CRZEEN
HBDDT. IEBEEICERDSY I ITEDRETEHDELA. INTOIRILF—TZ R
DAL, ERORECH T DFREZES, RER(IE. HIROMR RS TORENS LDNE <
DEVZEZFDDICEIIEET,

In a similar vein, we shouldn't shy away From "art for art's sake"; we shouldn't fed guilty about
programs that are just for fun. I once got a great kick out of" writing a one-statement ALGOL
program that invoked an innerproduct procedure in such an unusual way that it calculated the ruth

15719

trans.md 9/6/2019

prime number, instead of an innerproduct. Some years ago the students at Stanford were excited
about finding the shortest FORTRAN program which prints itself out, in the sense that the
program's output is identical to its own source text. The same problem was considered for many
other languages. I don't think it was a waste of time for them to work on this; nor would Jeremy
Bentham, whom I quoted earlier, deny the "utility" of such pastimes. "On the contrary," he wrote,
"there is nothing, the utility of which is more incontestable. To what shall the character of utility be
ascribed, if not to that which is a source of pleasure?"

BHR(IC. [EMDEdDEM] NSERINBRETEHBDERA. EEETEIEOELUHFDIZHRET
DITOTSACDVWTRZEILIRETEHDDERFA. FAENDT. RIETIIRIL—REREZETET
BESREERAETCHREFHRSZTOH UEIAT— MY MDALGOLT OIS LABEL ZENS
FESULWFYOZEBFEUR. 8ER. XY T4 — RREOFEEE. TOJSLDHIDNHBEDY
—ATFANEA—THDEVDIEKRT. TNEEREZERI T 3RIEOFORTRANTOT S LAZR DS
BDCECHMELTVELUR, BUMEMIDZ < DEEBETEBEINE L. HBESMNTNICEDBDD
(FEFEDEELTIFRVWERBWET, ELEEFESIBALUESILZ—RUAE, ZOXRDRED [EH
%] ZBRELERA. [ENETAN. FEIEWEZ, [ZOMAEKDERBDORMBODBZNEDIFIR
Lo REDIFRTIFIRNCUTE. SIHADMEZEIMAICIZFIAREH?]

Providing Beautiful Tools

Another characteristic of modern art is its emphasis on creativity. It seems that many artists these
days couldn't care less about creating beautiful things; only the novelty of an idea is important.
I'm not recommending that computer programming should be like modern art in this sense, but it
does lead me to an observation that I think is important. Sometimes we are assigned to a
programming task which is almost hopelessly dull, giving us no outlet whatsoever for any
creativity; and at such times a person might well come to me and say, "So programming is
beautiful? It's all very well fbr you to declaim that I should take pleasure in creating elegant and
charming programs, but how am i supposed to make this mess into a work of art?"

IRREMDEDS —DOIFHIE. BIEHZERLTNDZETT .. RADEZDT7—FT+4 A ME EL
WEDZED Z LICTNZFEROZIAD TLVENDTZLDSTY . EBRDET AT 7 DFRMEDH T
9. CORBKT, OA2Ea2—4~-—TJOJS I JZBREMDEIIBEDICT DI LEHEDLFE
AP, ENAEBREBSZLICRMEF LR, BL. AZEREFEACHRENISRERTOIS =S
SOPFROCEIDHTESN., BEHDIzdDEOZFE < 5RFEA. TLUT. TDXIREFIC,
APFADECBTERT, [EBTOTJSZ2TEFELLDON?] EEINELNFRA. AF &
THEBMANTHRNNRT OIS LZEDCECEVZRUDRELLMETDDIFETERNIET
I = EmR ? |

Welt, it's true, not all programming tusks are going to be fun. Consider the "trapped housewife,"
who has to clean off the same table every day: there's not room for creativity or artistry in every
situation. But even in such cases, there is a way to make a big improvement: it is still a pleasure
to do routine jobs if we have beautiful things to work with. For example, a person will really enjoy
wiping off" the dining room table, day after day, if it is a beautifully desig~lcd ruble made from
some fine quality hardwood.

NS, IRTOTOTS I IIRINELLRBIDITITESDFEEA. BHRUT—TILZA T
FRTNERSIZN TRACIADSNTZER] ZEXTHEL L D. HSDDIRRICRREE=AMIED
RMEHDFERBA. UL, TEDXRIIBETSR. AERBWEZITOIHENSHDFET. ELVLVED

16/19

trans.md 9/6/2019

HENUE. WOEDHESEZITDDEFFLELATT . FIRIE. LBOLEMNSESNIZELLTY
A2 ENIIL-TILDiEE. AFBREDT—J)IL28HIMVTAECELUATVET,

Therefore I want to address my closing remarks to the system programmers and the machine
designers who produce the systems that the rest of us must work with. Please, give us tools that
are a pleasure to use, especially for out routine assignments, instead of providing something we
have to fight with. Please, give us tools that encourage us to write better programs, by enhancing
our pleasure when we do so.

Lo T #alE. S RAFATOTSY—E DAL E—HETERE UIRITNERSRVNS T A
THE T DHEEETE (C. ADRBOBREZBNTZVOWERNET ., TAEEEHDORITNIERSIENE
DZERMITDRND(C. HFICHENEREDIZOHICERTIECDY —ILZHA TSV, IhfeE
MESFTBLECEVZERDDICEICLDT. KDRVWITOTISLEELS ZEZERHT DY —)L&F
EBIC5RTLES W,

It's very hard for me to convince college fleshmen that programming is beautiful, when the first
thing I have to tell them is how to punch "slash slash JOB equals so-and-so." Even job control
languages can be designed so that they are a pleasure to use, instead of being strictly functional.

AREOANCTOTSZINEVLWEMESEDIDEERICHLWVTT .. RAICEDRINIIRSR
VWDF. TRSY2a1RSW2aI0BEESHFHTI] £VWDZETY, TIATHHSETS R, &
ZE(CHEETDDTF AL ELPTWNLD(THETTEET,

Computer hardware designers can make their machines much more pleasant to use, for example
by providing floating-point arithmetic which satisfies simple mathematical laws. The facilities
presently available on most machines make the job of rigorous error analysis hopelessly difficult,
but properly designed operations would encourage numerical analysts to provide better
subroutines which have certified accuracy.

O>Ea1—~—/)\—ROITF7OFFER. L EREEMRBFOEZ G 378/ NEE Z 171t
ITBZLICED, Y2 2ZEIDEWOTLLIBDZENTEFT, BIE. FEALEDTYS > THATIEE
TAHERE(L. BRI S — DDA FZREN (CHRE(CUEX TN, BYNCHETSNITREQR. BUEDHT
ENREZIRAUELIDBWIIIL—F U ZRMHAT D EZEMUET,

Let's consider also what software designers can do. One of the best ways to keep up the spirits of
a system user is to provide routines that he can interact with. We shouldn't make systems too
automatic, so that the action always goes on behind the scenes; we ought to give the
programmer-user a chance to direct his creativity into useful channels. One thing all programrners
have in common is that they enjoy working with machines; so let's keep them ira the loop. Some
tasks are best done by machine, while others are best done by human insight; and a properly
designed system will find the right balance. (I have been trying to avoid misdirected automation
for many years.)

VIRDITHEAENTERCEEEZITCHFELL D, SRTALAI—H DM ZH#IF I DIz DER
BOBEDIDE,. I—F-—MWETERIN—F o ZRMHIDICETT ., AT LNBEDICEEE
EENBNKDICLT. PO a>HBEICEAETITMINRISICLTL SV, JOJ5Y—1—
H—(RORIEMZEBRRTF v oRILICETDEESZEZDINETY, INTOTOTSN—(CHIE
LTWBZEDIDIE. IS TOEEZRUVATNDEWNDZETY, IL—TEHIFLES, —2B
DX SHEC R D TRBKLLKEITENFE TN, MDIXTEABDARICK D TREKLSETE

17719

trans.md 9/6/2019

NEI, BUICEETSNES AT LANMBEIRNS O AZRDIFET. FAIRE. RoEHRDEE
fteflTLSELTEFRLL.)

Program measurement tools make a good case in point. For years, programmers have been
unaware of how the real costs of computing are distributeci in their prograrns. Experience
indicates that nearly everybody has the wrong idea about the real bottlenecks in his programs; it is
no wonder that attempts at efficiency go awry so often, when a programmer is never given a
breakdown of costs according to the lines of code he has written. His job is something Eke that of
a newly married couple who try to plan a balanced budget without knowing how much the
individual items like food, shelter, and clothing will cost. All that we have been giving programmers
is an optimizing compiler, which mysteriously does something to the programs it translates but
which never explains what it does. Fortunately we are now finally seeing the appearance of
systems which give the user credit for some intellb gence; they automatically provide
instrumentation of programs and appropriate feedback about the real costs. These experimental
systems have been a huge success, because they produce measurable improvemeats, and
especially because they are fun to use, so I am confident that it is only a matter of time before the
use of such systems is standard operating procedure. My paper in ComputitTg Surveys discusses
this further, and presents some ideas for other ways in which an appropriate interactive routine
can enhance the satisf'action of user programmers.

JO0S LBEY—ILRAZDORWITY, fIFEEDM. JO05%E I>E1—F+ > DERD
DX TOTSLADPRTEDISICHFRETN TV ERDEBATURE, BEHNS, (FEFIART
DANBEDDTOT S LDEKREDR NLAZY IICDWTHEEDIEEZ ZF O TLWB T ENMDMNDE
9, JOJSNY—HENEI— ROITICIHUEIRX MDORRRERLUTEZISNRWNESE, IRODRIT
PNUR UK T DDERBECTIEDDFEFA. WOMEE. BRL BT, REEREDELZ DI A
FLADBRANMDONSIRNEE, SO ROENEFEZTBULLD &I BHEHDY TILDMAETT,
JO0SY—(CIMELTWBDIE. &EEI>2 /1S —ZIFTY. R@bd>/\1>—(&. RIS
TJOUS ACAMRERERCEZUEITH. ENMIETDIONEFRALERA. EVVRTEIC, Fh
B ERENIIC. 1—H—(ASHhDMBEESX DS XTLOHERZRTWET . TOJ S LD
EERBOIRXMMIEAT @R T+ — R\ OZBEHN(CIRHUET. CNSDEERS XA,
ERJRERNERZTEMR T DIcs. FIERITIDNELWZH., KEIIZEIROTNET, TDLIR
S 2T LADFERANZERNMRVEFIBIC IR D DIZRFREIDRIREE EHE L TULVET . ComputitTg
Surveys TOFADFHX TlE. CNUICDWTES(THAL. @BlaEmRIL—F o 11— -TJ005
R —DiEEZEDH MDD ECDNTDWN DDA F P ZiRRrUET,

Language designers also have an obligation to provide languages that encourage good style, since
we all know that style is strongly influenced by the language in which it is expressed. The present
sttrge of interest ira structured programming has revealed that none of our existing languages is
really ideal for dealing with program and data structure, nor is it clear what an ideal language
should be. Therefore I look forward to many careful experiments in language design during the
next few years.

SHEETAICE. RIAINEBICBHEESNDZLFHEEN O TLDEH. RVWRYAILZE
92 EEZREIDIEBEHDFITNARIRENTVEY . BLDSHDREDBIEIratBiEt T O
D320 BIFOSEOENET OIS LAVPT —IBEZRS DICAS(CIBN TR, B8
HREENESHINENBEETERNC EZPASMNCLELZ, UM T. FFSEBER. =
EGETDZ K DEERRBEZEUHCLTVET,

18719

trans.md 9/6/2019
Summary

To summarize: We have seen that computer programming is an art, because it applies
accumulated knowledge to the world, because it requires skill and ingenuity, and especially
because it produces objects of beauty. A programmer who subconsciously views himself as an
artist will enjoy what he does and will do it better. Therefore we can be glad that people who
lecture at computer conferences speak about the state of the Art.

BWIDE A2E21—45-TOTSZIT@EMCHD. BESNIAHZHFRSER T S7ZHT
9. AIEIR. TUTRICENAELSOATZ T I MEERT Db, BNZET7—T4ABELT

\BEBDOIBICRTWVWBRTOISTY—(FE. BONULTWVWBRTEEZEUAT, B2EDIFLWPBTLL
S, Uleh'oT. O E1—49—SETHEEI DALNDNERFRFMIICDOVWTEDIDIELLNTETY,

19/19

